Image Classification in Greenplum Database Using Deep
Learning

Oliver Albertini', Divya Bhargov!, Alexander Denissov', Francisco Guerrero!, Nandish Jayaram®,
Nikhil Kak!, Ekta Khanna!, Orhan Kislal!, Arun Kumar?, Frank McQuillan?!, Lisa Owen!,
Venkatesh Raghavan!, Domino Valdano!, Yuhao Zhang®

l'VMware, 2 University of California San Diego, *Intuit

ABSTRACT

Artificial neural networks can be used to create highly accurate
models in domains such as language processing and image recog-
nition. For example, convolutional neural networks (CNN) can
be used to compare satellite images taken over time to monitor
changes in rainforest cover in the Amazon basin, or to assess the
damage caused by wildfires in order to help direct relief and conser-
vation efforts. To address these important problems, we need tools
that allow subject matter experts to build models and query image
data stored in heterogeneous sources, and the ability to expand or
contract computational resources as data volumes change. In this
demonstration, we showcase the use of Greenplum as an end-to-
end platform for deep learning. We cover the Pivotal Extension
Framework (PXF) to fetch and transform images from cloud object
stores, and exploit graphics processing unit (GPU) cycles to run
Apache MADIib deep learning methods.

KEYWORDS

Deep Learning, In-Database Analytics, Image Classification, Mas-
sively Parallel Processing Databases

1 INTRODUCTION

Advanced analytics, in its various forms, is rapidly growing in im-
portance in many organizations. Apache MADIib [3] is an open
source project that provides a rich library of machine learning
methods from logistic regression, decision trees, and k-means, to
deep learning algorithms such as CNN and Recurrent Neural Net-
works (RNN). To be scalable, these algorithms must execute within
a database that (1) is capable of processing large amounts of data, (2)
exploits parallelism through a distributed query execution engine
and (3) utilizes specialized hardware such as GPUs to train mod-
els. Greenplum [2] is a massively parallel processing database that
provides such capabilities and integrates seamlessly with Apache
MADIib so that algorithms can run on data inside the database. In
this work, we demonstrate a scalable solution for image classifica-
tion in Greenplum Database using Apache MADIib.

“This is a joint work done at Pivotal Inc. Authors are ordered alphabetically.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Portland ‘20, June 2020, Portland, Oregon, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-XxXX-X/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Images are increasingly being stored in disparate sources, namely,
cloud object stores, transactional databases, Hadoop data lakes,
and analytical data warehouses. Greenplum Platform Extension
Framework facilitates a parallel, high throughput access to images
from heterogeneous data sources. We convert these images into
PostgreSQL arrays rather than loading them as their raw data type
(JPG, TIFF, etc.). These arrays can then be passed to Apache MADIib,
which can in turn use them with deep learning libraries like Keras
and Tensorflow.

Next, we provide a high level architecture of Greenplum Data-
base, Apache MADLIib, and PXF.

1.1 Greenplum Data Warehouse

Greenplum Database [2] is a massively parallel processing (MPP)
analytics database that adopts a shared-nothing architecture with
multiple cooperating processors. Figure 1 shows the high level
architecture of Greenplum. Greenplum handles storage and pro-
cessing of large amounts of data by distributing the load across
several servers to create an array of individual databases, all work-
ing together to present a single database image. The master host
is the entry point to Greenplum; it is the entity to which clients
connect and submit SQL statements. The master host coordinates
work with other database instances, called segments, to handle data
processing and storage.

Query

Optimization = { Master Host_ @}—{ standby Master @)
& Dispatch —
$ ===

Interconnect

Ve

Segment Hosts
Query
Processing
& Data Storage

Figure 1: Example Greenplum Architecture with GPUs.

1.2 Apache MADLib Analytics Library

Apache MADLIb [3] is an open source library of in-database ana-
lytic methods. It provides a suite of algorithms for machine learning,
data mining, graph, and statistics that run at scale within a data-
base engine, without the need for data import/export to other tools.
MADIib has a SQL interface and currently supports Pivotal Green-
plum Database and PostgreSQL. Most of the underlying algorithms

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Portland 20, June 2020, Portland, Oregon, USA

are implemented internally in Python or C++ for efficiency. Cur-
rently, MADIib supports more than fifty principal algorithms, such
as logistic regression, decision trees, neural networks, k-means
clustering and deep learning. Since MADIib benefits from the par-
allel execution aspect of distributed systems like Greenplum, all
the algorithms are designed in such a way that the computations
can be parallelized and merged into one final result. One of the
building blocks of MADIib is the use of user-defined aggregates
(UDAs) and user-defined functions (UDFs). In general, aggregates
are the natural way in SQL to implement mathematical functions
that take as input the values of an arbitrary number of rows. UDFs
are used to implement complex iterative methods which pass state
across iterations intelligently. These UDFs in turn call UDAs con-
taining the actual computation which are then executed on the
individual segments. The results from these individual segments
are then collected back on master which then returns a final result
set. In this way, all large data movement is done within the database
engine and the computation is efficiently parallelized.

1.3 Platform Extension Framework

PXF allows users to read and write data from/to heterogeneous data
sources using external tables. PXF is able to scale by performing
the read/write operations in parallel on all segments. PXF uses the
CREATE EXTERNAL TABLE command to create an external
table using the pxf protocol. Below is sample syntax for the case of
image files stored on S3.

CREATE READABLE EXTERNAL TABLE image_table(
fullpaths TEXT[], directories TEXT[],
names TEXT[], image INT[]
)
LOCATION ('pxf://bucket/chip_images/*.png?
PROFILE=s3:image&SERVER=s3&BATCH_SIZE=64') FORMAT 'CSV';

e The LOCATION clause specifies the pxf protocol as a URI
that identifies the path to the location of the external data.

e The PROFILE clause specifies the profile used to access the
data. PXF supports profiles that access text, Avro, JSON,
RCFile, Parquet, SequenceFile, ORC, and image data.

o The SERVER clause provides the server information such as
location, access credentials, and other relevant properties.

e The BATCH_SIZE clause identifies the number of images
PXF loads into one row.

When a Greenplum user runs a query against a PXF external
table, a query plan is generated and then dispatched from the Green-
plum master host to the Greenplum segments hosts. The PXF Exten-
sion running on each Greenplum segment process, in turn, forwards
the request to the PXF Server running on the same host. A typical
PXF deployment topology, as shown in Figure 2, places a PXF Server
on each host that runs one or more Greenplum segment processes.
A PXF Server receives at least as many requests as the number of
segment processes running on the host, and potentially more if
the query is complex and contains multiple processing slices. Each
such request is assigned a PXF Server thread assigned to it.

Internally, PXF defines three interfaces to read and write data
from external sources: the Fragmenter, Accessor, and Resolver. PXF

Raghavan, et al.

Master Host

Pivotal
Greenplum

Segment Host 1 Segment Host 2

F--» PXF Extension

[gs:zzéﬁlé} [ééé]

‘) (J [(f] -exTERNALDATA @ 9 7 ‘

A - OR’ACLE ' MySQL F—ﬁa’n‘éék\@
Microsoft Azure .)= reSQL

SQLServer

mongoDB

Figure 2: PXF Extension Framework Architecture.

supplies multiple implementations for these interfaces using differ-
ent communication protocols and supports multiple data formats.

e Fragmenter splits the external dataset into independent
fragments that can be read in parallel. The fragmenter does
not retrieve the actual data, it works only with metadata.

e Accessor is responsible for reading or writing data from/to
external data sources, as well as converting data into individ-
ual records. PXF provides different accessors to connect to
remote databases using JDBC, cloud object storage vendors,
and remote Hadoop clusters using HDFS Client libraries.

e Resolver maps each field data type and value into a format
that Greenplum or the external system understands.

2 TECHNICAL DETAILS
2.1 Reading Images with PXF

PXF’s extensible architecture enables fetching image data from an
external data source such as S3 or Hadoop. The main advantage of
using PXF is its high concurrency and throughput when loading a
large set of images into Greenplum. PXF has a built-in mechanism
to fragment the total set of images into subsets that can be retrieved
and processed in parallel by each Greenplum segment worker.
Image Representation. PXF reads each image file as a row of data,
and translates the image, pixel by pixel, into a mathematical repre-
sentation suitable for efficient storage and processing in Greenplum.
PXF translates each pixel of an image into a three-element array
representing red, green, and blue color values, respectively. For in-
stance, a CMYK image of size 256 X 256 X 4 can thus be represented
as a three-dimensional integer array with a size of 256 X 256 X 3.
Image Batching. With this approach, a single image can be stored
in a database tuple using an integer array type. However, squeezing
more data in a tuple is advantageous for machine learning as it re-
duces the number of table scans during model training. We attempt
to fit multiple images into a single database tuple. Since Greenplum
allows up to 1GB of data in a tuple we are able to fit 675 images, of
size 256 X 256 pixels, in a single tuple.

PXF normally accesses a row of data from a single file, which it
breaks into fields to form a database tuple and then finally transfers
it to Greenplum. For image loading, however, PXF reads data from
as many files as can fit into a single tuple.

Image Classification in Greenplum Database Using Deep Learning

Streaming Images. Constructing a database tuple out of all images
at once before sending the tuple to Greenplum is inefficient. To
address this, we implemented an iterator that appends one image
at a time to the tuple at processing time and sends it to Greenplum
before the whole tuple has been retrieved and processed.
Streaming Fragments. To reduce the memory footprint further,
we stream the metadata during the fragmentation call. This opti-
mization yielded a drop in PXF JVM memory usage from 8GB to 2GB
when fetching 1.8 million images from the Places365 database[7].

2.2 Model Selection Using Apache MADIib

After images have been loaded into the database and transformed
using PXF, the next step is to build an accurate classification model.
Training deep neural networks is resource-intensive since hundreds
of trials may be needed to generate a good model architecture and
associated hyper-parameters. For example, trying 5 CNN architec-
tures with 5 values each for learning rate and regularizer adds up to
125 combinations. This is the challenge of model selection, which
is time consuming and expensive, especially if you are only train-
ing one model at a time. Massively parallel processing databases
like Greenplum can have hundreds of segments, so we exploit this
parallel compute architecture to address the challenge of model
selection by training many model configurations in parallel.
Deep learning frameworks and GPUs on Greenplum. There
are different ways to leverage GPUs in a database. One approach is
to try to make certain database operations faster by parallelizing
some portion of the workload (e.g., aggregations, sorting, grouping)
and to reduce dependency on indexing and partitioning. This ap-
proach results in what are commonly called GPU databases, which
are typically "ground up" development projects designed around
GPUs. A different approach is to employ GPUs to power standard
deep learning libraries on an existing database, without making
changes to the query processing function of the database server
itself. This is the approach we took with Greenplum: combine all
of the capabilities of a mature, fully-featured MPP database with
GPU acceleration to train deep learning models faster, using all of
the data residing in the database.

Figure 1 shows GPUs attached to 2 out of the 3 segment hosts
in the database cluster. Greenplum supports heterogeneous archi-
tectures like the one depicted because having GPUs attached to
every host machine can be very costly. Deep learning frameworks
and associated libraries like CUDA, cuDNN are installed on each
host where GPUs reside. MADIib currently supports Keras with a
TensorFlow backend, though other frameworks may be added.
Model hopper parallelism. To train many models at the same
time we implement a novel approach from recent research called
model hopper parallelism (MOP) [6]. MOP combines task and data
parallelism by exploiting the fact that stochastic gradient descent
(SGD), a widely used optimization method, is robust to data visit
order.

The method works as follows. Suppose we have a set S of train-
ing configurations that we want to train for k epochs. The dataset
is shuffled once and distributed to p workers (segments). We pick
p training configurations from S and assign one configuration per
worker where each configuration is trained for a single sub-epoch.

Portland ‘20, June 2020, Portland, Oregon, USA

When a worker completes a sub-epoch, it is assigned a new con-
figuration that has not yet been trained on that worker. Thus, a
model "hops" from one worker to another until all workers have
been visited, which completes one epoch of SGD for each model. In
this way we can train all S configurations for k epochs (Figure 3).

Models to train

Segment 1 Segment 2 Segment 3

Initial training

Model hopping
& training

>

One -

sub-epoch . Hop'
Model hopping
& training

Figure 3: Model Hopper Parallelism.

One
iteration

APL Below are the two SQL queries needed to run MOP on Green-
plum. The first loads model configurations you want to train into
a model selection table. The second calls the MOP function to fit
each of the models in the model selection table.

SELECT load_model_selection_table(
'model_arch_table', -- model architecture table
'model_selection_table', -- output table
ARRAY[...], -- model architecture ids
ARRAY[...], -- compile hyperparameters
ARRAY[...] -- fit hyperparameters);

SELECT madlib_keras_fit_multiple_model (
'data', -- data table
'trained_models', -- output table name
'model_selection_table', -- model selection table
100, -- number of iterations
TRUE,-- use GPUs
-- optional parameters);

3 DEMONSTRATION PLAN

Demonstration Setup. We use a cluster of 4 hosts on Google
Cloud Platform (GCP), each with 32 vCPUs, 150 GB of memory and
4 X NVIDIA Tesla P100 GPUs. Greenplum Database 5 and Apache
MADIib 1.17 are installed on the cluster, with 4 segments (workers)
configured per host; this means 16 workers in total. We use Keras
2.2.4 and TensorFlow 1.13.1.

Attendee Interactivity. To interactively demonstrate deep learn-
ing with Greenplum, we use a Jupyter Notebook, which is a common
data science tool. Attendees can query and plot results for a trained
model, such as loss and accuracy, similar to Figure 7. Attendees can
also run inference using this model to display the top predicted
classes for a new image, similar to Figure 8. For a more in-depth
demonstration, attendees can modify the model architecture by
adding or dropping layers, then retrain the model to see the effect
on loss and accuracy. While models are training, attendees can
view CPU, GPU and network activity for each host on the GCP
console. More details on the end-to-end demonstration steps are
shown below. (Note: to enable the demonstration to run quickly,
we will provide smaller datasets to choose from.)

Portland 20, June 2020, Portland, Oregon, USA

tisql
CREATE EXTERNAL TABLE cifar_external batchsize 500 (
fullpaths TEXT[],
y TEXT[],
names TEXT[],
x INT[]

)
LOCATION ('pxf://madlib-datasets/cifar10/?
PROFILE=gs: image&SERVER=gs-aa&BATCH_SIZE=500&STREAM_ FRAGMENTS=true') FORMAT 'csv';

CREATE TABLE cifarl0_train AS SELECT * FROM cifar_external batchsize_500;

Figure 4: Screenshot of Jupyter Notebook for Loading Data

Step 1: Load image data with PXF. First we load image data from
an external object store with PXF (Figure 4). We load 50K training
images from the well known CIFAR-10 dataset of 32x32 color im-
ages in 10 classes [1]. This takes approximately 9 minutes on the
demonstration cluster, which includes converting images to Post-
greSQL arrays using the Python Imaging Library (PIL), normalizing
RGB values, and packing 500 image arrays per row in the heap
table.

Step 2: Load model selection tuples. We load models from [4]
and [5] which have 553K and 1.25M trainable parameters, respec-
tively. We use grid search to generate a set of 16 training configura-
tions. Table 1 shows the details. Figure 5 shows the query to load
the model selection table, along with the first few rows of the table
indicating the compile and fit parameters.

Model architecture | Batch size Optimizer Learning rate
{ref [5], ref [4]} {64,128} | {Adam, RMSprop} | {1073, 107%}

Table 1: Workloads for Classifying CIFAR-10 Images

SELECT madlib.load model _selection_table('model arch library', -- model architecture table
A e, -- model selection table output
ARRAY[1,2], -- model ids from model architecture table
ARRAY[-- compile params

$$1oss="categorical_crossentropy',optimizer='rmsprop(1r=0.0001, decay=le-
$$1oss="categorical crossentropy' optimizer='rmsprop(lr=0.001, decay=le-6
$$1oss='categorical crossentropy',optimizer='adam(1r=0.00001)",metrics=["
$$10ss="categorical_crossentropy ' ,optimizer='adam(1r=0.0001)",metrics=['s

1

ARRAY[-- £it params
sSbatch_size=64,epochs=155,
ssbatch_size=128, epochs=15§

1

)i

SELECT * FROM mst_table ORDER BY mst_key;
Done.

1 rows affected.
16 rows affected.
mst key model id compile_params fit_params
1 1 loss="categorical crossentropy optimizer="adamir=0.0001),metrics=[accuracy’] batch size=64,epochs=1

loss="categorical crossentropy optimizer="adamilr=0.0001),metrics=[accuracy’] batch_size=128,epochs=1

2 1
3 1 ' crossentropy , decay=1e-6),metrics=['accuracy’] batch size=64 epochs=1
4 1

| crossentropy', optimizers=" decay=1e-6),metrics=['accuracy’] batch_size=128,epochs=1

Figure 5: Defining and Loading Model Selection Tuples

Step 2: Load model selection tuples. We load models from [4]
and [5] which have 1.25M and 553K trainable parameters, respec-
tively. We use grid search to generate a set of 16 training configura-
tions. Table 1 shows the details. Figure 5 shows the query to load
the model selection table, along with the first few rows of the table
indicating the compile and fit parameters.

23sql
DROP TABLE IF EXISTS cifarl0_multi model, cifarl0_multi model summary, cifarl0_multi model_info;

SELECT madlib.madlib_keras_fit multiple model('cifar10_train packed', -- source_table
'cifarl0_multi_model', -- model_output_table
‘mst_table', -- model_selection_table

50, -- num_iterations
TRUE, -- use gpus

‘cifarl0_val packed', -~ validation dataset

il -~ metrics compute frequency

)i
Figure 6: Training Models
Step 3: Train models. Now we are ready to train the models,

which is done using the query in Figure 6. Figure 7 shows the
learning curves for the best 3 of the 16 configurations trained. Note

Raghavan, et al.

that the chart shows 10 iterations; however we use 5 passes over the
data per sub-epoch, so we are effectively doing 50 total passes over
the data during training. The best model achieves 82.2% accuracy on
the validation set, though this could likely be improved with tuning.
Training takes approximately 27 minutes on the demonstration
cluster. If we had used a single host only with 4 segments, training
would take approximately 50 minutes.

Validation Accuracy

e — 15
080 // 12 9
1

Validation Loss (Cross Entropy)

/ 11
075 ‘/
10
0.70
09
0.65 08

e B
06 N——y

1 » 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Ireration Ireration

Training config. 15 - model=ref [7], RMSprop, learning rate=1073, batch size=64
Training config. 9 - model=ref [7], Adam, learning rate=10, batch size=64
Training config. 11 - model=ref [7], RMSprop, learning rate=10, batch size=64

Figure 7: Plot Results

dog 0.9532127
deer 0.025846407
bird 0.009315644

Figure 8: Example Inference with Top 3 Probabilities

Step 4: Inference. We take our best model from Step 3 to use for
prediction. In this part of the demo, the attendee can run the infer-
ence on new images and see how well the model does at correctly
classifying them (as shown in Figure 8). For the human, this may
be an easy task. Let’s see how well the Al can do!

REFERENCES

[1] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. 2009. The CIFAR-10 dataset.
https://www.cs.toronto.edu/ kriz/cifarhtml. (2009).

[2] Greenplum. 2015. The World’s First Open-Source and Massively Parallel Data
Platform. (2015). https://greenplum.org/

[3] Joseph M. Hellerstein, Christopher Ré, Florian Schoppmann, Daisy Zhe Wang,
Eugene Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng,
Kun Li, and Arun Kumar. 2012. The MADIib Analytics Library or MAD Skills,
the SQL. PVLDB 5, 12 (2012), 1700-1711.

[4] Jason Brownlee. 2019. How to Develop a CNN From Scratch for CIFAR-10 Photo
Classification. https://machinelearningmastery.com/how-to-develop-a-cnn-from-
scratch-for-cifar-10-photo-classification/. (2019).

[5] Keras Documentation. 2019. Train a simple deep CNN on the CIFAR10 small
images dataset. https://keras.io/examples/cifar10_cnn/. (2019).

[6] Supun Nakandala, Yuhao Zhang, and Arun Kumar. 2019. Cerebro: Efficient and
Reproducible Model Selection on Deep Learning Systems. In Workshop on Data
Management for End-to-End Machine Learning. 6:1-6:4.

[7] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba.
2017. Places: A 10 million Image Database for Scene Recognition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (2017).

https://greenplum.org/

	Abstract
	1 Introduction
	1.1 Greenplum Data Warehouse
	1.2 Apache MADLib Analytics Library
	1.3 Platform Extension Framework

	2 Technical Details
	2.1 Reading Images with PXF
	2.2 Model Selection Using Apache MADlib

	3 Demonstration Plan
	References

